Всего книг:

826

Последнее обновление:

 2008-07-25 16:42:12

 

Искать

 

 


 

Нас считают!


Яндекс цитирования

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Девид Фарлонг - Стоунхендж и пирамиды Египта : Глава 9

Allk.Ru - Все книги!

 

 

 

Девид Фарлонг - Стоунхендж и пирамиды Египта:Глава 9

 

Древние землемеры

Этот остроумный меод похож на применявшийся в Древнем Египте, что лишний раз подтверждает вероятность культурной связи.


Съемка местности

Несмотря на свою специализацию в градостроительстве и архитектуре, я не мог вообразить себе, как древние обитатели Британских островов могли производить съемку местности таким способом, который подсказывают ландшафтные композиции Марлборо Даунс. Сегодня съемка представляет собой весьма искусное дело, в котором используется лазерная технология и спутниковые системы связи. Глобальная система местоопределения (ГСМ) была первоначально разработана американскими военными с помощью космической технологии. Она позволяет определить широту и долготу любого места на Земле с точностью до одного метра. С помощью прибора ГСМ любой может тотчас же определить, где именно он находится на планете. Эта система имеет первостепенное значение для моряков, а сегодня еще и служит огромным подспорьем современной техники картографирования.
Обычно съемка включает три основные операции:
1) измерение и установление углов;
2) измерение расстояний;
3) установление местоположения согласно предопределенного плана.
До создания Глобальной системы местоопределения съемка производилась с помощью высокоточных теодолитов. Эти инструменты используются для весьма точного измерения углов между точками визирования. Любое место может быть снято таким образом с помощью триангуляции измеренной реперной линии. Например, если я хочу разместить на местности равносторонний треугольник со стороной в 100 метров (328 футов), то сначала мне придется тщательно измерить одну сторону треугольника. Установив теодолит по очереди на двух концах этой линии и зафиксировав на нем угол в 60°, я могу нанести две другие стороны Место их пересечения станет третьим углом треугольника. Суть этого приема заключается в точном установлении опорной линии и умении измерить требуемые углы.
Чем дальше мы отправляемся в прошлое, тем больше уменьшается точность средств измерения. Римское землемерное оборудование было несложным, но сыграло важную роль в планировке сети дорог. Тем не менее построение круга радиусом в 9,6 километра (6 миль) с достаточной точностью – дело далеко не шуточное. Оно едва ли было по плечу лучшим современным топографам, по крайней мере до появления ГСМ. Несмотря на явное при сутствие кругов на местности, мне представлялось невероятным, чтобы их могли создать с помощью оборудования, имевшегося в эпоху позднего неолита. Мне предстояло ответить на вопрос как это могло быть сделано?
Задача разместить какие то объекты по одной линии вполне по плечу культуре, пользующейся примитивным оборудованием. Для этого и нужно то всего несколько прямых реек. Измерение же углов, когда я впервые задумался над этим, представлялось более сложной задачей.

И древние землемеры должны были определять их с до статочно высокой точностью для того, чтобы создать ком позицию Марлборо Даунс.
Современный теодолит представляет собой весьма сложный прибор. Даже римский образец в виде металлического устройства для визирования на калиброванном кольце далеко не прост. Ничего подобного ему так никогда и не было найдено во всех археологических раскопках объектов неолита. Следовало искать иное решение.
Прежде чем разгадать эту тайну, мне пришлось вычислить угловые соотношения большого числа объектов. Не столь уж и сложная математическая задача становится невероятно утомительной, если только не воспользоваться компьютером. Эта новая машина обладает достаточным запасом энергии, чтобы совершить с ее помощью удачные «набеги» на проект. Но в то время мои поиски увели меня с Марлборо Даунс в район моих первоначальных открытий в Котсуолдсе, в частности, к объектам вокруг холма Бредон.


Холм Бредон и окружающий район

Данный район протянулся приблизительно на 17,7 километра (11 миль) с востока на запад и на 14,5 километра (9 миль) с севера на юг. Он занимает часть Котсуолда, часть долины Ившем и долины Северн. На севере и западе его граница проходит по берегам извилистой Авон – одной из самых живописных рек Англии, соединяющей большие аббатства Ившем, Першор и Тьюкесбери. На востоке и юге он ограничен отрогом Котсуолд, круто поднимающимся над затопляемой поймой реки Исборн. В центре возвышается холм Бредон, похожий на спину спящей черепахи. Он имеет примерно 6,4 километра (4 мили) в длину и 3,2 километра (2 мили) в ширину. С его вершины высотой около 300 метров (1000 футов) открывается прекрасный вид. Известняк из холма Бредон и отрога Котсуолда служил строительным материалом для большей части района, что и сказалось на характерной архитектуре Котсуолда. В постройках на берегах Авона с ее луговинами и камышами использованы более традиционные материалы – кирпич, древесина и солома.
Район не очень то и богат археологическими находками, по крайней мере в сравнении с Марлборо Даунс. Самые ранние из них датируются поздним неолитом – около 2600 года до н.э., хотя продолговатые могильные холмы на соседних отрогах Котсуолда подсказывают, что этот район был заселен еще до 3200 года до н. э. На холме Бредон есть остатки крепости железного века, где были откопаны пятьдесят тел. Защитники крепости были зарублены в бою. Похожий, но меньший форт был найден и на холме Вулстоун на юге, но за исключением межевых камней и менгиров здесь мало что осталось от античности.
Христианство пришло в этот район в середине VII века, и вскоре в соседнем Вустере была учреждена епархия. Знаменитое аббатство Ившем было основано в 701 году. По легенде, у свинопаса Эовса одна из свиней сбежала в ближайший лес. Заподозрив, что она опоросилась, Эовс поспешил на ее поиски и неожиданно увидел Деву Марию с двумя ангелами, распевавшими псалмы. О своем видении он сообщил епископу Вустера Эгвину, который посетил указанное свинопасом место, и ему было то же самое видение и было сказано основать здесь аббатство. Он так и поступил и назвал его Ово Хоулм по имени добродетельного свинопаса. Аббатство стало одним из самых могущественных в стране, центром паломничества со всей Европы.
В 1265 году аббатство стало местом побоища, в котором был разбит и убит Симон де Монфор, известный как «отец основатель парламента». Летописцы отмечали, что в момент его гибели «небо потемнело, и раскаты грома и огромные молнии потрясли землю». Церковь так почитала его, что похоронила его изуродованное тело под главным престолом. Оно стало источником ряда чудесных исцелений, придавших еще большую известность аббатству в Британии. Аббатство было разрушено по указу Генриха VIII о секуляризации монастырей, обогатившему скорее короля, нежели папу римского. Ныне от аббатства осталась только часовня.
Аббатству Першор повезло немного больше. Первые христианские поселения постоянно подвергались набегам датчан, и многие монастыри были разграблены и разрушены. Не осталось практически ничего от первых церквей. Возрождение аббатства началось в 983 году, когда внук местного вождя Олда выкупил мощи досточти мого Св. Идбурги и похоронил их в аббатстве. Идбурга была внучкой короля Альфреда Великого, она постриглась в монахини в Винчестере и умерла в монастыре в 960 году после безупречно прожитой жизни.
Как и в Ившема, и у ее усыпальницы происходили чудеса, и поэтому она стала вторым центром паломничества. Ныне от этого большого аббатства остались только клирос, колокольня, южный поперечный неф и место раздачи милостыни поблизости. Аббатство было по священо Св. Идбурге и Св. Марии.
Церковь аббатства Тьюкесбери сохранилась – от подручных Кромвеля ее спасли местные жители, уплатившие за нее большую сумму – 453 фунта. Аббатство может сегодня похвалиться второй по размерам приходской церковью в Британии. Ее колоссальные нормандские колонны – самые высокие в Европе. Аббатство было основано в VII веке монахом по имени Теок, построившим первую келью. В 715 году бенедиктинцы учредили монастырь, но он был разрушен датчанами. Нынешнее аббатство сохранилось со времен нормандского нашествия и подобно Ившему и Першору посвящено Деве Марии.
Святым женщинам поставлены и многие другие церкви. Так, Марии посвящены еще церкви в Седжберроу и Эстон Сомервиле. Церковь в Сувербери посвящена Св. Фейс, в Эштоне под холмом – Св. Варваре, а часовня Нетертон и колодец Св. Катерины – кому же еще, как не Св. Екатерине. Но есть и церкви, посвященные мужчинам: в Кропторне, Стэнтоне и Комбертоне – Св. Михаилу, а во Флэдбери и Бекфорде – Иоанну Крестителю. Еще есть церкви Св. Петра (Дамблтон), Св. Николая (Тэддингтонг), Святой Троицы (Экингтон) и Св. Джайлса (Бредонс Нортон).
Здесь названы не все церкви, расположенные в изучаемом районе. Самыми приметными являются Малый Комбертон, Бриклхэмптон, Элмли Касл, Хинтон на Лужайке, Кемертон и Олдертон. Они были исключены из компьютерного обследования, поскольку не стали частью моего изначального исследования района. Я также решил не включать и крепость на холме Бредон, но не потому, что она не вписывается в какую либо схему – она таки вписывается. Однако объект настолько велик, что он впол не мог стать частью ряда построении (рис. 60).


Прорисовывается схема

В книге «Старый прямой путь» Уоткинс пишет:
«Возьмите себе за правило работать с объектами, а не хвататься – каким бы соблазнительным это ни представлялось – за любой отрезок дороги или тропы в качестве доказательства (леи)…Три или четыре точки становятся дополнительным доказательством. Трех точек недостаточно для доказательства существования леи, нужны как мини мум четыре».
Леи Уоткинса обычно протягивались до 32 километров (20 миль). Применение этих критериев к объектам, окружающим холм Бредон, не дало перспективных результатов. На одной линии выстроены только четыре объекта – Стэнтон, Седжберроу, часовня Нетертон и Першор, и это все. Есть несколько построений из трех точек вроде Тьюкесбери Сувербери Ившем и Оксентон Дамблтон Эотон Сомервиль. И все же едва ли их можно считать леями. Сколь нибудь значимый узор прорисовался только тогда, когда я проанализировал угловые соотношения.
Процесс оказался несложным. Я ввел в компьютер названия и координатную сетку различных объектов и с помощью простой математической программы вычислил угловые соотношения между соединяющими их линиями. Компьютер мог бы подсчитать их с точностью до многих десятичных дробей, но такой точности и не нужно. На расстоянии в один километр отклонение на один градус может составить лишь около 300 метров (984 фута). Чтобы облегчить себе задачу, я решил округлять расчеты в сторону увеличения или уменьшения – до ближайшего целого градуса.
В теории случайное распределение объектов должно давать равномерный разброс угловых отношений. Если существовал некий предопределенный план, рассуждал я, тогда очевидные углы в 60° и 90° должны были стать его частью. Поэтому я наладил компьютер на выдергивание этих углов. Для начала я проанализировал десять объектов и получил более 800 различных углов. Позже я собирался проанализировать угловые отношения между многими церквами района, а их более 59. Каждый такой расчет давал более 2800 углов.
Хотя было много примеров углов в 60° и 90° в моем первоначальном обследовании, один храмовый объект выделялся среди остальных. Таблица 3 показывает угловые отношения между церковью в Дамблтоне и девятью другими объектами. Именно эта церковь дала важный ключ, который помог мне разгадать геометрию, лежащую в основе района. Для расшифровки таблицы следует смотреть на объекты в левой колонке и считывать значения под названиями объектов на верхней строчке. На пример, угол Тьюкесбери – Дамблтон – Першор равен 70°, а угол Большой Компертон – Дамблтон – Оувер бери – 30°.
Так уж случилось, что в этой выборочной таблице все углы кратны 10°, что необычно Кратное число 10° повторяется 18 раз в ряду от 1° до 180°, что составляет 10 процентов возможных случаев. Между девятью объектами возможны 36 углов, так что при любой случайной последовательности объектов нам следует ожидать, что 10 процентов (36:10 = 3,6) из них будут иметь угловое отношение, кратное 10. У нас же все 36 углов кратны 10 – в девять раз больше ожидаемого случайного результата.
Шанс получения такого результата в случайной конфигурации подобного размера равен примерно одному на одиннадцать миллионов, но в данном случае объекты не назовешь совершенно случайными, поскольку они были выбраны среди остальных. И тем не менее результат впечатляет:

Если бы был осуществлен некий сознательный план, следовало бы ожидать большого числа углов в 60° и 90°. Я предполагал, что такой план должен был быть основан на какой то системе чистой геометрии, ибо прямой угол (в 90°) очень легко построить с помощью нескольких колышков и отрезков шпагата. Деля угол пополам при помощи тех же методов, можно получить дополнительные углы в 45°, 22,5° и т. д. Схожим образом можно построить углы в 60°, для чего нужны лишь три одинаковых отрезка веревки. Углы в 50° и 40° построить сложнее с помощью тех же геометрических методов. В таблице 3 каждый из них появляется три раза, следовательно, существовал какой то способ их построения.
Найденный позже ответ свидетельствовал как о необычной простоте, так и о математической гениальности системы.


Окончательное решение

Во время анализа свойств прямоугольного треугольника с углами в 40° и 50° я неожиданно наткнулся на решение. Я обнаружил, что в треугольнике с такими углами основание и перпендикулярная сторона измеряются соответственно пятью и шестью единицами.

Иными словами, налицо выраженное целыми числами (5 6) отношение двух перпендикулярных сторон. Поначалу я подумал что это просто счастливое совпадение. Треугольник был выбран потому, что отвечал критериям градусного основания, кратного десяти, то есть имел углы 40°, 50° и 90°. Вскоре меня озарило можно построить большое число углов с помощью очень простых числовых отношений. Построив прямоугольный треугольник и меняя от ношения сторон, можно легко получить определенные углы. Мне оставалось лишь найти отношения, необходимые для построения различных углов.
По случайному совпадению именно эту систему применяли древние египтяне для установления склона своих пирамид – вспомним секед угла. Разница заключалась лишь в том, что египтяне использовали такое отношение для установления градиентов, а древние бритты – для построения углов на горизонтальной плоскости. Зная нужные отношения, легко можно было построить весь ряд углов, не располагая знаниями о сложной геометрии и сложными приборами. Стало ясно, почему археологи не раскопали никаких теодолитов. Искомые углы могли быть построены с помощью простых и широко доступных материалов.
Для построения какого либо угла на ровном участке земли нужны лишь тонкая бечевка, несколько колышков и измерительное устройство для фиксации отношений. Идеально подходит прямой отрезок ствола молодого деревца длиной в один два метра. Весь фокус в том, чтобы знать отношения искомого угла, и его уже легко изобразить на земле.
Система проще некуда. Необходимо лишь знать, какие отношения дают требуемые углы, например, в случае уже описанного треугольника древним землемерам следовало лишь помнить отношение 6:5. Оно дает углы в 39,81° и 50,19°, что весьма близко к 40° и 50° (рис. 61).
При использовании такого метода и таких отношений погрешность составит менее 3,5 метра (11,5 фута) на 1 километр (0,62 мили). Некоторые отношения дают гораздо большую степень точности. В случае угла в 6°, получаемого при отношении 19:2, погрешность составит 1 к 4000. Ее можно проиллюстрировать следующим примером: во время путешествия из Лондона в Нью Йорк отклониться на одну милю от точки назначения.
Ныне схожая система используется в тригонометрии, устанавливающей особые отношения для вычисления углов. Их называют синусы, секансы и тангенсы, а их обратные величины – косинусы, косекансы и котангенсы. Синусы и косинусы можно использовать для вычисления углов при известной длине гипотенузы, а тангенсы связаны отношением между основанием и перпендикулярной стороной прямоугольного треугольника. Компьютеры и калькуляторы вычисляют эти величины в доли секунды,– а в мои школьные годы нам приходилось искать их в ряде таблиц.



Композиция холма Бредон

С помощью этой легкой системы построения углов можно простым и все же точным способом определить схемы ландшафта. Применительно к району холма Бредон я нашел следующие широко использованные отношения:

В то время я предполагал, что углы в 30°, 60°, 46° и 90° были получены с помощью геометрических построений, но позже – как мы увидим дальше – мне пришлось пересмотреть свою точку зрения.
Я подозревал, что объекты данного района были объединены иной геометрической схемой. Найденные мною углы в 30°, 60° и 90°, не сомневался я, указывали на некую форму обдуманной планировки. Я был уверен, что нахожусь на пороге открытия другой схемы вроде уже найденной на Марлборо Даунс. Это подкрепило бы теорию, что подобные схемы были широко распространенным явлением. Изначально я искал круги, но они не выявлялись. Однако повсюду я натыкался на большее число треугольников, чем могли бы дать значимые отношения.
Мои прежние исследования подсказывали, что где то в композиции должен нарисоваться равносторонний треугольник, и я принялся его искать. Когда же я нашел его, он оказался центральным в построении треугольной матрицы местоположения главным образом храмовых объектов.



Геометрия объектов холма Бредов

Первоначальный треугольник образован церковью Дамблтона, холмом Вулстоун и церковью Оувербери Холм. Вулстоун является господствующей высотой, с которой открывается вид на большую часть района, а церковь Дамблтон гнездится у основания холма Олдертон, который блокирует линию прямой видимости и с церковью Оувербери, и с холмом Вулстоун. Церковь Оувербери расположена на южном склоне холма Бредон. Ныне линия прямой видимости с него на холм Вулстоун заблокирована домами, но в прошлом последний несомненно просматривался при условии, если этому не мешали деревья. Расстояния между тремя объектами измеряются 6250 метрами (3,88 мили).
На рисунке 63 показано взаимоотношение трех главных объектов – церкви Оувербери, церкви Дамблтон и холма Вулстоун, отмеченное треугольником АВС. Как видим, угол ABE с линией визирования на аббатство Тьюкесбери равен 30°, как и угол СВЕ. Таким образом, линия ЕВ делит пополам сторону АС в точке S. Продление линии АВ до точки Т, то есть на расстояние ВТ, равное расстоянию BS, определяет местоположение церкви Стэнтон.


После установления первого треугольника следующим логичным шагом стало определение, как положение церкви Большого Комбертона вписывается в схему. Компьютерный анализ района показал, что эта церковь расположена под углом в 90° к линии, соединяющей холм Вулстоун с церковью Дамблтона. Замкнув треугольник линией, соединяющей холм Вулстоун с церковью Большого Комбертона, получаем угол в 55° на холме Вулстоун и угол в 35° у церкви Комбертона. На рисунке 61 показано, что прямоугольный треугольник с углами 55° и 35° может быть построен на отношении 7:10.


После установления местоположения церкви Большого Комбертона стало возможным определить местополо жение аббатства Тьюкесбери, построив еще один прямо угольный треугольник. Соединив точки D и Т (Большой Комбертон и Стэнтон) и построив прямой угол в точке D, точка Е – местоположение аббатства Тьюкесбери оказывается на пересечении этой линии с линией BS, которая делит пополам вершину изначального равностороннего треугольника (рис. 64).
В Древнем Египте это отношение использовалось при вычислении земельных площадей. Можно добиться простого приближения, удваивая площадь с помощью отношения 7 к 10 в виде 72 = 49, а 102 = 100.
Конфигурация треугольников в треугольниках продолжается, поскольку линия аббатства Тьюкесбери Стэнтон образует сторону еще одного важного треугольника. Если построить угол в 60° на этой линии в точке Тьюкесбери, то его новая сторона пересечется с продолжением линии, соединяющей холм Вулстоун и Большой Комбертон, в точке местоположения аббатства Першор. Место положение аббатства Ившем может быть найдено тем же способом – построить прямой угол в точке церкви Дамблтона на линии Дамблтон – церковь Оувербери и продлить новую сторону до ее пересечения с продолжением линии Тьюкесбери – Оувербери. В точке пересечения и находится аббатство Ившем.
Местоположение церкви Седжберроу может быть получено на пересечении линии Дамбтон – Ившем с линией Стэнтон Першор. После установления всех этих местоположений можно определить и положение остальных церквей с помощью простой триангуляции.
В схеме используются следующие главные треугольники:




Ключи древних землемеров

Мое исследование района холма Бредон позволило мне понять, что точные углы могли быть построены на местности с помощью простых числовых отношений. Такая система триангуляции объектов вполне могла быть доступна древним землемерам, пользовавшимся примитивным оборудованием, при условии, если они понимали соответствующие принципы. Этот оригинальный метод похож на систему, применявшуюся в Древнем Египте, что увеличивает вероятность культурных связей.
Недостаток моих усилий доказать с помощью съемки Бредон Хилла существование осознанной системы планировки еще во времена неолита заключался в том, что я в основном использовал места расположения средневековых церквей. За несколькими достойными внимания исключениями, существуют лишь анекдотичные свидетельства, привязывающие большинство средневековых церквей к известным святым местам язычников. Сильнее всего, пожалуй, археологи критикуют Уоткинса за его концепцию преемственности использования тех же мест.
И все же мое изучение Бредон Хилла отмечено одним достижением оно выявило некую систему, которая могла быть использована для размещения объектов на местности. Для того же, чтобы удостовериться в том, что эта система действительно датируется временами неолита, мне необходимо было изучить район с объектами, точно датированными началом III тысячелетия до н. э. После долгих размышлений я обратил внимание на юго запад, на район Бодмин Мур в северном Корнуолле, где в радиусе 7,5 километра (4,65 мили) находятся 15 каменных кругов.



Предыдущий вопрос | Содержание | Следующий вопрос

 

Внимание!

1. Все книги являются собственностью их авторов.
2. Предназначены для частного просмотра.
3.Любое коммерческое использование категорически запрещено.

 

 


In-Server & Artificial Intelligence

Контакты

317197170

support[@]allk.ru

 

Ссылки

Art